By Topic

An Automatic Bridge Detection Technique for Multispectral Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chaudhuri, D. ; Defence Electron. Applic. Lab., Uttaranchal ; Samal, A.

Extraction of features from images has been a goal of researchers since the early days of remote sensing. While significant progress has been made in several applications, much remains to be done in the area of accurate identification of high-level features such as buildings and roads. This paper presents an approach for detecting bridges over water bodies from multispectral imagery. The multispectral image is first classified into eight land-cover types using a majority-must-be-granted logic based on the multiseed supervised classification technique. The classified image is then categorized into a trilevel image: water, concrete, and background. Bridges are then recognized in this trilevel image by using a knowledge-based approach that exploits the spatial arrangement of bridges and their surroundings using a five-step approach. A river extraction module identifies the rivers using a recursive scanning technique and geometric constraints. Using a neighborhood operator and the knowledge of the spatial dimensions of a typical bridge, we identify the possible bridge pixels. These potential bridge pixels are then grouped into possible bridge segments based on their connectivity and geometric properties. Finally, these bridge segments are verified on the basis of directional water index along different directions and their connectivity with the road segments. The approach proposed in this paper has been implemented and tested with images from the IRS-1C/1-D satellite that has a spatial resolution of 23.5 23.5 m. The results show that this approach is both efficient and effective in extracting bridges.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 9 )