By Topic

Segmentation-Based MAP Despeckling of SAR Images in the Undecimated Wavelet Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bianchi, T. ; Dipt. di Elettron. e Telecomun., Univ. di Firenze, Florence ; Argenti, F. ; Alparone, L.

In this paper, a novel despeckling algorithm based on undecimated wavelet decomposition and maximum a posteriori estimation is proposed. Such a method represents an improvement with respect to the filter presented by the authors, and it is based on the same conjecture that the probability density functions (pdfs) of the wavelet coefficients follow a generalized Gaussian (GG) distribution. However, the approach introduced here presents two major novelties: 1) theoretically exact expressions for the estimation of the GG parameters are derived: such expressions do not require further assumptions other than the multiplicative model with uncorrelated speckle, and hold also in the case of a strongly correlated reflectivity; 2) a model for the classification of the wavelet coefficients according to their texture energy is introduced. This model allows us to classify the wavelet coefficients into classes having different degrees of heterogeneity, so that ad hoc estimation approaches can be devised for the different sets of coefficients. Three different implementations, characterized by different approaches for incorporating into the filtering procedure the information deriving from the segmentation of the wavelet coefficients, are proposed. Experimental results, carried out on both artificially speckled images and true synthetic aperture radar images, demonstrate that the proposed filtering approach outperforms the previous filters, irrespective of the features of the underlying reflectivity.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 9 )