By Topic

Neural-Network based algorithm for ice concentration retrievals from satellite passive microwave data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Present algorithms for observing the multiyear ice cover are not accurate in multiyear fraction calculations, which is a significant disadvantage of the present system of global ice monitoring considering the fact that multiyear ice is one of the key indicators of changes in the Arctic climate. In this research regionally differing Neural Networks (NN)-based algorithms for total and multiyear Arctic sea ice concentration retrievals from Special Sensor Microwave Imager (SSM/I) data are developed using closed scheme of the numerical experiment. Era-40 Reanalysis data on atmospheric parameter profiles and sea ice temperature are used for the numerical integration of the radiation transfer of the microwave emission in the Atmosphere-Ocean-Ice System. The data on cloud liquid water content and cloud boundaries are modeled basing on the results of Arctic SHEBA experiment. Numerical values for first year and multiyear ice emissivities are taken from published experimental data. The calculated radiometer brightness temperature values are used for NN-based theoretical algorithm development. New weather filter is defined. The algorithms are validated for stable winter conditions using collocated SSM/I data and Synthetic Aperture Radar (SAR) images, classified by an ice expert.

Published in:

Microwave Radiometry and Remote Sensing of the Environment, 2008. MICRORAD 2008

Date of Conference:

11-14 March 2008