By Topic

Humidity and Pressure Regulation in a PEM Fuel Cell Using a Gain-Scheduled Static Feedback Controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Karnik, A.Y. ; Powertrain Controls R&A Dept., Ford Motor Co., Dearborn, MI ; Sun, J. ; Stefanopoulou, A.G. ; Buckland, J.H.

In this paper, the pressure difference between the anode and cathode compartments of a polymer electrolyte membrane (PEM) fuel cell stack is regulated along with the anode and cathode humidities using an anode recirculation system. The pressure regulation requirement stems from membrane safety considerations. The regulation of average humidities in the two compartments is a necessary (although not a sufficient) requirement for stack water management. Two actuators in the anode recirculation system are considered, namely the dry hydrogen flow and the anode back pressure valve. These actuators are adjusted using a static output feedback controller that relies on pressure and humidity measurements on the anode side of the fuel cell stack. As the water mass dynamics and the characteristics of the water transport through the PEM are significantly different between subsaturated conditions (water is present only in vapor phase) and saturated conditions (liquid water along with water vapor), we show that the performance of the static output feedback controller with a fixed set of gains for subsaturated condition deteriorates significantly under a saturated condition. A gain-scheduled controller is therefore developed to compensate for a water-vapor saturated cathode condition. Analysis and simulation provide insights on some of the design and implementation issues for the gain-scheduled output feedback system.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:17 ,  Issue: 2 )