We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

On the Scattering of Electromagnetic Waves by Periodic Rough Dielectric Surfaces: A BOA Solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yildiz, S. ; Fac. of Electr. & Electron. Eng., Istanbul Tech. Univ., Istanbul ; Altuncu, Y. ; Yapar, A. ; Akduman, I.

A new approach for the scattering of electromagnetic (EM) waves from periodic dielectric rough surfaces is addressed. The method is an extension of the buried object approach (BOA), which is developed for rough surfaces of infinite extend, to the present problem. The BOA allows to model the original problem as the scattering of EM waves from cylindrical objects located in a two-half-space medium with planar interface. Then, the problem is reduced to the solution of a Fredholm integral equation of second kind through the periodic Green's function of two-half-space medium. The periodic Green's function of two-half-space medium is calculated via the Floquet mode expansion, whose numerical evaluation can be accelerated by using effective methods. The method can also be used to solve the scattering problems of rough surfaces of infinite extend and having a localized roughness. Numerical simulations show that the method yields effective and accurate results for surfaces of arbitrary variation.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 9 )