By Topic

Effect of Thermal Strain in Helical Slow-Wave Circuit on TWT Cold-Test Characteristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shengmei Yan ; Vacuum Electron. Nat. Lab., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Yao, Lieming ; Zhonghai Yang

A simulated model has been established to calculate the temperature of helical slow-wave circuits accurately. The finite-element-method software ANSYS was used to analyze the thermal distortion of the traveling-wave-tube (TWT) helical slow-wave circuit. The thermal-analysis results show that the thermal stress deforms the helix primarily at the positions contacting the support rods and that the expansion of the helical tape width and thickness are very small and can be ignored. The effect of thermal strain on the helical slow-wave circuit cold-test characteristics was analyzed in detail. The periodic boundary conditions in the computer code MAFIA were employed to determine the effect on dispersion and on-axis interaction impedance. With increased helix temperature, the phase velocity decreases significantly, and the interaction impedance varies slightly.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 8 )