By Topic

Monte Carlo Simulation of Ion Implantation in Crystalline SiC With Arbitrary Polytypes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tian, S. ; Synopsys Inc., Dallas, TX

A Monte Carlo model for ion implantation in crystalline SiC is developed, which can be applied to arbitrary polytypes, including but not limited to 2H-SiC, 3C-SiC, 4H-SiC, 6H-SiC, and 15R-SiC. It is shown that with optimized parameters, a semiempirical electronic stopping power model is effective in simulating the dopant profiles in both channeling and random direction implants, despite its highly anisotropic crystal structure of SiC. The effect of polytypism on the dopant profiles is also shown. The simulated dopant profiles are compared with the experimental SIMS profiles in 4H-SiC and 6H-SiC, and good agreement is obtained in both cases. Finally, the predicted dopant profiles in 15R-SiC are explored for the first time.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 8 )