By Topic

Characterization of Transient Gate Oxide Trapping in SiC MOSFETs Using Fast I V Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Moshe Gurfinkel ; Sch. of Electr. Eng., Tel Aviv Univ., Tel Aviv ; Hao D. Xiong ; Kin P. Cheung ; John S. Suehle
more authors

Threshold voltage and drain current instabilities in state-of-the-art 4H-SiC MOSFETs with thermal as-grown SiO2 and NO-annealed gate oxides have been studied using fast I-V measurements. These measurements reveal the full extent of the instability underestimated by dc measurements. Furthermore, fast measurements allow the separation of negative and positive bias stress effects. Postoxidation annealing in NO was found to passivate the oxide traps and dramatically reduce the instability. A physical model involving fast transient charge trapping and detrapping at and near the SiC/SiO2 interface is proposed.

Published in:

IEEE Transactions on Electron Devices  (Volume:55 ,  Issue: 8 )