By Topic

A Wideband W-Band Receiver Front-End in 65-nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Khanpour, M. ; Edward S. Rogers, Sr. Dept. of Electr. & Comput. Eng., Toronto Univ., Toronto, ON ; Tang, K.W. ; Garcia, P. ; Voinigescu, S.P.

A 75-to-91 GHz receiver front-end, consisting of a three-stage cascode low-noise amplifier (LNA), a double-balanced Gilbert-cell mixer and a differential DC-to-9 GHz IF buffer, is reported in 65-nm general purpose (GP) CMOS technology. The noise and input-impedance matched LNA employs a cascode input stage with shunt-series, transformer feedback. A theoretical and experimental comparison with a conventional inductor-feedback LNA indicates 0.5-1 dB higher gain, 0.3-0.6 dB lower noise figure and better input return loss for the transformer feedback LNA. The receiver has a differential down-conversion gain of 13 dB, an input P1dB of -16.2 dBm, and a double-sideband noise figure of 8.5 to 10 dB at an IF of 1 GHz. Because of the transformer feedback, the input return loss is better than -20 dB from 80 to 92 GHz and remains below -10 dB from 70 GHz beyond 95 GHz. The circuit occupies an area of 460 mum times 500 mum and consumes 89 mW (47 mW in the LNA and mixer) from a 1.5 V supply. An LO-to-RF isolation of 60 dB was measured for LO signals in the 80-to-85 GHz range. Measurements of the mixer breakout, which includes transformers at the RF and LO ports, show a record NFDSB of 8 to 10 dB over the 74-to-91 GHz band. The 50-Omega noise figure of the LNA is 6.4 to 8.4 dB in the 75-to-88.5 GHz range. The LNA can also be employed as a transmitter output stage with a saturated output power of +4 dBm.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 8 )