By Topic

A 30.5 dBm 48% PAE CMOS Class-E PA With Integrated Balun for RF Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Riccardo Brama ; Dipt. di Sci. e Metodi dell'Ing., Univ. di Modena e Reggio Emilia, Reggio Emilia ; Luca Larcher ; Andrea Mazzanti ; Francesco Svelto

Integration of the power amplifier together with signal processing in a transmitter is still missing in demanding RF commercial products. Issues preventing PA integration include LO pulling phenomena, thermal dissipation, and power efficiency. In this work we investigate high efficiency watt range Class-E PAs and integrated baluns. In particular, insights in the design of a fully differential cascode topology for high efficiency and reliable operation are provided and a narrowband lumped element balun, employing minimum number of integrated inductors for minimum power loss, is introduced. Two versions have been manufactured using a 0.13 mum CMOS technology. The first comprises the driver, and a differential PA connected to an external low-loss commercial balun. Experiments prove 31 dBm delivered output power, with 58% PAE and 67% drain efficiency, at 1.7 GHz. The second version adopts the same driver and PA and also integrates the balun. Experiments prove 30.5 dBm delivered output power, with 48% PAE and 55% drain efficiency, at 1.6 GHz.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:43 ,  Issue: 8 )