Cart (Loading....) | Create Account
Close category search window
 

Compression-Aware Energy Optimization for Video Decoding Systems With Passive Power

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akyol, E. ; Electr. & Comput. Eng. Dept., California, Univ., Santa Barbara, CA ; van der Schaar, M.

The objective of dynamic voltage scaling (DVS) is to adapt the frequency and voltage for configurable platforms to obtain energy savings. DVS is especially attractive for video decoding systems due to their time-varying and highly complex workload and because the utility of decoding a frame is solely depending on the frame being decoded before its display deadline. Several DVS algorithms have been proposed for multimedia applications. However, the prior work did not take into account the video compression algorithm specifics, such as considering the temporal dependencies among frames and the required display buffer. Moreover, the effect of the passive (leakage) power when performing DVS for multimedia systems was not explicitly considered. In this paper, we determine the optimal scheduling of the active and passive states to minimize the total energy for video decoding systems. We pose our problem as a buffer-constrained optimization problem with a novel, compression-aware definition of processing jobs. We propose low-complexity algorithms to solve the optimization problem and show through simulations that significant improvements can be achieved over state-of-the art DVS algorithms that aim to minimize only the active power.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:18 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.