Cart (Loading....) | Create Account
Close category search window
 

Strontium optical lattice clock with high accuracy and stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Thomsen, J.W. ; Dept. of Phys., Univ. of Colorado, Boulder, CO ; Campbell, G.K. ; Ludlow, A.D. ; Blatt, S.
more authors

Techniques of modern quantum optics allows for the preparation of atoms in well controlled quantum states ideal for precision measurements and tests of fundamental laws of physics. We report on our recent progress with a highly stable and accurate optical atomic clock based on ultracold fermionic 87Sr atoms confined in a one dimensional optical lattice. Currently, we have carried out a detailed evaluation of our clock at the 10-16 level and can report stability at 2 times 10-15 level at one second. At typical operating parameters for the clock we observe evidence of a density dependent clock shift. Operating the clock at a particular excitation ratio of ground state and excited clock state we observe a shift consistent with zero.

Published in:

Precision Electromagnetic Measurements Digest, 2008. CPEM 2008. Conference on

Date of Conference:

8-13 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.