By Topic

Using Hidden Markov Models in Vehicular Crash Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Singh, G.B. ; Dept. of Comput. Sci. & Eng., Oakland Univ., Rochester, MI ; Haiping Song

This paper presents a system for automotive crash detection based on hidden Markov models (HMMs). The crash pulse library used for training comprises a number of head-on and oblique angular crash events involving rigid and offset deformable barriers. Stochastic distribution characteristics of crash signals are validated to ensure conformity with the modeling assumptions. This step is achieved by analyzing the quantile-quantile (Q-Q) plot of actual pulses against the assumed bivariate Gaussian distribution. HMM parameters are next induced by utilizing the expectation-maximization (EM) procedure. The search for an optimal crash pulse model proceeds using the ldquoleave-one-outrdquo technique with the exploration encompassing both fully connected and left-right HMM topologies. The optimal crash pulse architecture is identified as a seven-state left-right HMM with its parameters computed using real and computer-aided engineering (CAE)-generated data. The system described in the paper has the following advantages. First, it is fast and can accurately detect crashes within 6 ms. Second, its implementation is simple and uses only two sensors, which makes it less vulnerable to failures, considering the overall simplicity of interconnects. Finally, it represents a general and modularized algorithm that can be adapted to any vehicle line and readily extended to use additional sensors.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 3 )