By Topic

Semantic Analysis of User Behaviors for Detecting Spam Mail

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Asung Han ; Intell. E-Commerce Syst. Lab., Inha Univ., Incheon ; Hyun-Jun Kim ; Inay Ha ; Geun-Sik Jo

According to continuous increasing of spam email, 92.6% of recent total email is known spam email. In this research, we will show an adaptive learning system that filter spam emails based on user's action pattern as time goes by. In this paper, we consider relationship between user's actions such as what action is took after one action and how long does it take. They analyze that each action has how much meaning, and that it has an effect on filtering spam emails. And that in turn determines weight for each email. In experimentation, we will compare results of system of this research and weighted Bayesian classifier using real email data set. Also, we will show how to handle personalization for concept drift and adaptive learning.

Published in:

Semantic Computing and Applications, 2008. IWSCA '08. IEEE International Workshop on

Date of Conference:

10-11 July 2008