Cart (Loading....) | Create Account
Close category search window

AlGaN/GaN MOS-HEMT With \hbox {HfO}_{2} Dielectric and \hbox {Al}_{2}\hbox {O}_{3} Interfacial Passivation Layer Grown by Atomic Layer Deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yuanzheng Yue ; Sch. of Microelectron., Xidian Univ., Xi''an ; Hao, Yue ; Zhang, JinCheng ; Ni, Jinyu
more authors

We have developed a novel AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor using a stack gate HfO2/Al2O3 structure grown by atomic layer deposition. The stack gate consists of a thin HfO2 (30-A) gate dielectric and a thin Al2O3 (20- A) interfacial passivation layer (IPL). For the 50-A stack gate, no measurable C-V hysteresis and a smaller threshold voltage shift were observed, indicating that a high-quality interface can be achieved using a Al2O3 IPL on an AlGaN substrate. Good surface passivation effects of the Al2O3 IPL have also been confirmed by pulsed gate measurements. Devices with 1- mum gate lengths exhibit a cutoff frequency (fT) of 12 GHz and a maximum frequency of oscillation (f MAX) of 34 GHz, as well as a maximum drain current of 800 mA/mm and a peak transconductance of 150 mS/mm, whereas the gate leakage current is at least six orders of magnitude lower than that of the reference high-electron mobility transistors at a positive gate bias.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.