By Topic

Application Acceleration with the Explicitly Parallel Operations System - the EPOS Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Papakonstantinou, A. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana-Champaign, Urbana, IL ; Deming Chen ; Wen-Mei Hwu

Different approaches have been proposed over the years for automatically transforming high-level-languages (HLL) descriptions of applications into custom hardware implementations. Most of these approaches however are confined by basic block level parallelism described within the CDFGs (control-data flow graphs). In this work we propose a new high-level synthesis flow which can leverage instruction-level parallelism (ILP) beyond the boundary of the basic blocks. We extract statistical parallelism from the applications through the use of Superblocks and Hyperblocks formed by advanced front-end compilation techniques. The output of the front-end compilation is then used in our high-level synthesis in order to map the application onto a new domain-specific architecture named EPOS (explicitly parallel operations system). EPOS is a stylized micro-code driven processor equipped with novel architectural features that help take advantage of the instruction-level parallelism generated in the front-end compilation. A novel forwarding-path optimization engine is also employed during the high-level synthesis flow in order to minimize the long interconnection wires and the multiplexers in the processor. To evaluate the EPOS processor, we compare its performance with a previous domain-specific processor NISC on a common set of benchmarks. Experimental results show that significant performance gain (3.45times on average) is obtained compared to NISC.

Published in:

Application Specific Processors, 2008. SASP 2008. Symposium on

Date of Conference:

8-9 June 2008