By Topic

Automatic Test Generation for Combinational Threshold Logic Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gupta, P. ; Dept. of Electr. & Comput. Eng., Villanova Univ., Villanova, PA ; Zhang, R. ; Jha, N.K.

We propose an automatic test pattern generation (ATPG) framework for combinational threshold networks. The motivation behind this work lies in the fact that many emerging nanotechnologies, such as resonant tunneling diodes (RTDs), single electron transistor (SET), and quantum cellular automata (QCA), implement threshold logic. Consequently, there is a need to develop an ATPG methodology for this type of logic. We have built the first automatic test pattern generator and fault simulator for threshold logic which has been integrated on top of an existing computer-aided design (CAD) tool. These exploit new fault collapsing techniques we have developed for threshold networks. We perform fault modeling, backed by HSPICE simulations, to show that many cuts and shorts in RTD-based threshold gates are equivalent to stuck-at faults at the inputs and output of the gate. Experimental results with the MCNC benchmarks indicate that test vectors were found for all testable stuck-at faults in their threshold network implementations.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 8 )