Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Thin-Film PZT Lateral Actuators With Extended Stroke

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oldham, K.R. ; Dept. of Mech. Eng., Michigan Univ., Ann Arbor, MI ; Pulskamp, J.S. ; Polcawich, R.G. ; Dubey, Madan

Many microelectromechanical system applications require large in-plane actuation forces, with stroke lengths ranging from submicrometer to tens of micrometers in distance. Piezo electric thin films are capable of generating very large actuation forces, but their motion is not easily directed into lateral displacement in microscale devices. A new piezoelectric thin-film actuator that uses a combination of piezoelectric unimorph beams to generate lateral displacement has been developed. The piezoelectric actuators were fabricated using chemical-solution-derived lead zirconate titanate thin films. These actuators have demonstrated forces greater than 7 mN at displacements of nearly 1 mum, with maximum stroke lengths at 20 V greater than 5 mum in a 500-mum-long by 100-mum-wide actuator. Force and displacement capabilities can be manipulated through simple changes to the actuator design, while actuator nonlinearity can produce dramatic gains in work capacity and stroke length for longer actuators.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 4 )