By Topic

Convex approximation techniques for joint multiuser downlink beamforming and admission control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Matskani, E. ; Dept. of Electron. & Comput. Eng., Tech. Univ. of Crete, Chania ; Sidiropoulos, N.D. ; Zhi-Quan Luo ; Tassiulas, L.

Multiuser downlink beamforming under quality of service (QoS) constraints has attracted considerable interest in years, because it is particularly appealing from a network operator's perspective (e.g., UMTS, 802.16e). When there are many co-channel users and/or the service constraints are stringent, the problem becomes infeasible and some form of admission control is necessary. We advocate a cross-layer approach to joint multiuser transmit beamforming and admission control, aiming to maximize the number of users that can be served at their desired QoS. It is shown that the core problem is NP-hard, yet amenable to convex approximation tools. Two computationally efficient convex approximation algorithms are proposed: one is based on semidefinite relaxation of an equivalent problem reformulation; the other takes a penalized second-order cone approach. Their performance is assessed in a range of experiments, using both simulated and measured channel data. In all experiments considered, the proposed algorithms work remarkably well in terms of the attained performance-complexity trade-off, consistently exhibiting close to optimal performance at an affordable computational complexity.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 7 )