Cart (Loading....) | Create Account
Close category search window

An EM approach to multiple-access interference mitigation in asynchronous slow FHSS systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xing Tan ; Dept. of Electr. & Comput. Eng, Univ. of Florida, Gainesville, FL ; Shea, J.M.

In this paper, we apply the EM algorithm for mitigation of multi-access interference (MAI) in asynchronous slow frequency-hop spread spectrum (FHSS) systems that employ binary frequency-shift keying (BFSK) modulation. MAI occurs if the hopping patterns of the users are not orthogonal. We show that when FSK signals arrive asynchronously, the time offset exposes portions of the desired and interfering signals in a way that can be exploited to improve the decoder performance. We develop an iterative detection, estimation, and decoding scheme to recover the desired signal in the presence of MAI. We compare the performance of this algorithm with that of a conventional noncoherent BFSK transceiver and show that the EM-based algorithm is particularly effective in the presence of strong interfering signals and allows more users in a FHSS system.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.