By Topic

Using the physical layer for wireless authentication in time-variant channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Xiao ; Dept. of Electr. & Comput. Eng., Rutgers Univ., North Brunswick, NJ ; Larry J. Greenstein ; Narayan B. Mandayam ; Wade Trappe

The wireless medium contains domain-specific information that can be used to complement and enhance traditional security mechanisms. In this paper we propose ways to exploit the spatial variability of the radio channel response in a rich scattering environment, as is typical of indoor environments. Specifically, we describe a physical-layer authentication algorithm that utilizes channel probing and hypothesis testing to determine whether current and prior communication attempts are made by the same transmit terminal. In this way, legitimate users can be reliably authenticated and false users can be reliably detected. We analyze the ability of a receiver to discriminate between transmitters (users) according to their channel frequency responses. This work is based on a generalized channel response with both spatial and temporal variability, and considers correlations among the time, frequency and spatial domains. Simulation results, using the ray-tracing tool WiSE to generate the time-averaged response, verify the efficacy of the approach under realistic channel conditions, as well as its capability to work under unknown channel variations.

Published in:

IEEE Transactions on Wireless Communications  (Volume:7 ,  Issue: 7 )