By Topic

Asynchronous distributed power and rate control in ad hoc networks: a game-theoretic approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kucera, S. ; Grad. Sch. of Inf., Kyoto Univ., Kyoto ; Aissa, S. ; Yamamoto, K. ; Yoshida, S.

This paper analyzes distributed asynchronous power and rate control for wireless ad hoc networks. Importantly, all network transmitters are considered to be independent of any management infrastructure and to have the freedom to choose their own arbitrary control rules, using as input only information on local interference and achieved carrier signal-to-interference ratio (CIR). Such an approach respects diverse user preferences of on quality of service (QoS) and allows them to adapt to local network conditions in contrast with conventional cellular systems, whose users must follow centralized control commands from serving base stations. For this purpose, we develop a general non-cooperative game-theoretic framework and characterize the resulting power and rate allocation dynamics in terms of its convergence to network-wide acceptable equilibrium states under stochastic communication channels. Chief among the attractive features of our proposed framework is the fact that it is developed in an entirely abstract way without any particular technological or architectural assumptions, which are typically made in related works. Numerical simulations prove the potential of our approach to provide for fair, robust and comparably better CIR allocation in ad hoc networks with varying topology and user density.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 7 )