By Topic

An integrated reduced inertial sensor system — RISS / GPS for land vehicle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper demonstrates a low cost navigation solution that can efficiently work, in real-time, in denied GPS environment. It explores a reduced inertial sensor system (RISS) involving single-axis gyroscope and two-axis accelerometers together with a speed sensor to provide full navigation solution in denied GPS environments. With the assumption that the vehicle mostly stay in the horizontal plane, the vehicle speed obtained from the speed sensor are used together with the heading information obtained from the gyroscope to determine the velocities along the East and North directions. Consequently, the vehiclespsila longitude and latitude are determined. The position and velocity errors are estimated by Kalman filter (KF) relying on RISS dynamic error model and GPS position and velocity updates. The two accelerometers pointing towards the forward and transverse directions are used together with a reliable gravity model to determine the pitch and roll angles. This paper analyzes and discusses the merits and limitations of the proposed RISS system and its integration with GPS. The performance of the proposed method is examined by conducting road test experiment in a land vehicle.

Published in:

Position, Location and Navigation Symposium, 2008 IEEE/ION

Date of Conference:

5-8 May 2008