Cart (Loading....) | Create Account
Close category search window
 

EMF Exposure: A Numerical Model to Predict the Temperature Increase in Biological Vascularized Tissues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De Santis, V. ; Dept. of Electr. & Comput. Eng., Univ. of L''Aquila, L''Aquila ; Feliziani, M.

A numerical dosimetry procedure is applied to a biological tissue in order to evaluate the temperature increase produced by RF exposure. The originality of the proposed method regards the application of the bio-heat equation in a vascularized region considering a discrete blood vessel structure which operates as a cooling system in the biological region. First, the blood structure is assumed to be a hydraulic system where a laminate incompressible fluid flows. By this approach the blood velocity in all vessels are computed. Then, the diffusion-convection heat equation is analyzed in a three dimensional domain by a differential numerical method based on the finite difference method. A simple test configuration is finally analysed.

Published in:

Microwave Techniques, 2008. COMITE 2008. 14th Conference on

Date of Conference:

23-24 April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.