By Topic

Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chanki Kim ; Dept. of Mech. Eng., Pohang Univ. of Sci. & Technol. (POSTECH), Pohang ; Rathinasamy Sakthivel ; Wan Kyun Chung

The Rao-Blackwellized particle filter (RBPF) and FastSLAM have two important limitations, which are the derivation of the Jacobian matrices and the linear approximations of nonlinear functions. These can make the filter inconsistent. Another challenge is to reduce the number of particles while maintaining the estimation accuracy. This paper provides a robust new algorithm based on the scaled unscented transformation called unscented FastSLAM (UFastSLAM). It overcomes the important drawbacks of the previous frameworks by directly using nonlinear relations. This approach improves the filter consistency and state estimation accuracy, and requires smaller number of particles than the FastSLAM approach. Simulation results in large-scale environments and experimental results with a benchmark dataset are presented, demonstrating the superiority of the UFastSLAM algorithm.

Published in:

IEEE Transactions on Robotics  (Volume:24 ,  Issue: 4 )