Cart (Loading....) | Create Account
Close category search window
 

A Strategy for Attributes Selection in Cost-Sensitive Decision Trees Induction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, S. ; Inst. of Logics, Zhongshan Univ., Zhongshan ; Li Liu ; Xiaofeng Zhu ; Chen Zhang

Decision tree learning is one of the most widely used and practical methods for inductive inference. A fundamental issue in decision tree inductive learning is the attribute selection measure at each non-terminal node of the tree. However, existing literatures have not taken both classification ability and cost-sensitive into account well. In this paper, we present a new strategy for attributes selection, which is a trade-off method between attributes' information and cost-sensitive learning including misclassification costs and test costs with different units, for selecting splitting attributes in cost-sensitive decision trees induction. The experimental results show our method outperform than the existing methods, such as, information gain method, total costs methods, in terms of the decrease of misclassification costs with different missing rate and various costs in UCI datasets.

Published in:

Computer and Information Technology Workshops, 2008. CIT Workshops 2008. IEEE 8th International Conference on

Date of Conference:

8-11 July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.