Cart (Loading....) | Create Account
Close category search window

Computing and bounding the first-order Marcum Q-function: a geometric approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pooi Yuen Kam ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Li, Rong

A geometric interpretation of the first-order Marcum Q-function, Q(a,b), is introduced as the probability that a complex, Gaussian random variable with real mean a, takes on values outside of a disk CO,b of radius b centered at the origin O. This interpretation engenders a fruitful approach for deriving new representations and tight, upper and lower bounds on Q(a,b). The new representations obtained involve finite-range integrals with pure exponential integrands. They are shown to be simpler and more robust than their counterparts in the literature. The new bounds obtained include the generic exponential bounds which involve an arbitrarily large number of exponential functions, and the simple erfc bounds which involve just a few erfc functions, together with exponential functions in some cases. The new generic exponential bounds approach the exact value of Q(a,b) as the number of exponential terms involved increases. These generic exponential bounds evaluated with only two terms and the new simple erfc bounds are much tighter than the existing exponential bounds in most cases, especially when the arguments a and b are large. Thus, in many applications requiring further analytical manipulations of Q(a,b), these new bounds can lead to some closed-form results which are better than the results available so far.

Published in:

Communications, IEEE Transactions on  (Volume:56 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.