By Topic

Two-way counter machines and Diophantine equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Let Q be the class of deterministic two-way one-counter machines accepting only bounded languages. Each machine in Q has the property that in every accepting computation, the counter makes at most a fixed number of reversals. We show that the emptiness problem for Q is decidable. When the counter is unrestricted or when the machine is provided with two reversal-bounded counters, the emptiness problem becomes undecidable. The decidability of the emptiness problem for Q is useful in proving the solvability of some numbertheoretic problems. It can also be used to prove that the language L = {u1iu2i2|i≥0} cannot be accepted by any machine in Q (u1 and u2 are distinct symbols). The proof technique is new in that it does not employ the usual "pumping", "counting", or "diagonal" argument. Note that L can be accepted by a deterministic two-way machine with two counters, each of which makes exactly one reversal.

Published in:

Foundations of Computer Science, 1981. SFCS '81. 22nd Annual Symposium on

Date of Conference:

28-30 Oct. 1981