By Topic

Approximate and exact parallel scheduling with applications to list, tree and graph problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We study two parallel scheduling problems and their use in designing parallel algorithms. First, we define a novel scheduling problem; it is solved by repeated, rapid, approximate reschedulings. This leads to a first optimal PRAM algorithm for list ranking, which runs in logarithmic time. Our second scheduling result is for computing prefix sums of logn bit numbers. We give an optimal parallel algorithm for the problem which runs in sublogarithmic time. These two scheduling results together lead to logarithmic time PRAM algorithms for the connectivity, biconnectivity and minimum spanning tree problems. The connectivity and biconnectivity algorithms are optimal unless m = o(nlog*n), in graphs of n vertices and m edges.

Published in:

Foundations of Computer Science, 1986., 27th Annual Symposium on

Date of Conference:

27-29 Oct. 1986