By Topic

The distance bound for sorting on mesh-connected processor arrays is tight

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, We consider the problem of sorting n2 numbers, initially distributed randomly in an n × n mesh-connected processor array with one element per processor. We show a lower bound, based on distance arguments, of 4n routing steps on mesh-connected processors operating in an SIMD mode with no wraparounds in rows or columns, We present an algorithm using a novel approach, which is optimal upto the conslant of the leading term, and hence, succeed in proving the tightness of the lower bound based on distance. Keeping in mind the practical difficulties in implementation of this algorithm, we also present an extremely practical O(n) algorithm amenable for VLSI implementation and for existing mesh- connected computers. All the results in this paper were derived by using a new method of analysis inspired by the discovery of shear-sort or row-column sort.

Published in:

Foundations of Computer Science, 1986., 27th Annual Symposium on

Date of Conference:

27-29 Oct. 1986