Cart (Loading....) | Create Account
Close category search window
 

Closest-point problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A number of seemingly unrelated problems involving the proximity of N points in the plane are studied, such as finding a Euclidean minimum spanning tree, the smallest circle enclosing the set, k nearest and farthest neighbors, the two closest points, and a proper straight-line triangulation. For most of the problems considered a lower bound of O(N log N) is shown. For all of them the best currently-known upper bound is O(N2) or worse. The purpose of this paper is to introduce a single geometric structure, called the Voronoi diagram, which can be constructed rapidly and contains all of the relevant proximity information in only linear space. The Voronoi diagram is used to obtain O(N log N) algorithms for all of the problems.

Published in:

Foundations of Computer Science, 1975., 16th Annual Symposium on

Date of Conference:

13-15 Oct. 1975

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.