By Topic

Random Models for Sparse Signals Expansion on Unions of Bases With Application to Audio Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matthieu Kowalski ; Lab. d'Analyse, Topologie et Probabilites, Univ. de Provence, Marseille ; Bruno Torresani

A new approach for signal expansion with respect to hybrid dictionaries, based upon probabilistic modeling is proposed and studied. The signal is modeled as a sparse linear combination of waveforms, taken from the union of two orthonormal bases, with random coefficients. The behavior of the analysis coefficients, namely inner products of the signal with all basis functions, is studied in details, which shows that these coefficients may generally be classified in two categories: significant coefficients versus insignificant coefficients. Conditions ensuring the feasibility of such a classification are given. When the classification is possible, it leads to efficient estimation algorithms, that may in turn be used for denoising or coding purposes. The proposed approach is illustrated by numerical experiments on audio signals, using MDCT bases. However, it is general enough to be applied without much modifications in different contexts, for example in image processing.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 8 )