By Topic

Multivariate Reconstruction of Functional Networks From Cortical Sources Dynamics in MEG/EEG

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dossevi, A. ; Lab. de Neurosciences Cognitives & Imagerie Cerebrale, Univ. Pierre et Marie Curie-Paris, Paris ; Cosmelli, D. ; Garnero, L. ; Ammari, H.

In this paper, we present a simple method to find networks of time-correlated brain sources, using a singular value decomposition (SVD) analysis of the source matrix estimated after any linear distributed inverse problem in magnetoencephalography (MEG) and electroencephalography (EEG). Despite the high dimension of the source space, our method allows for the rapid computation of the source matrix. In order to do this, we use the linear relationship between sensors and sources, and show that the SVD can be calculated through a simple and fast computation. We show that this method allows the estimation of one or several global networks of correlated sources without calculating a coupling coefficient between all pairs of sources. A series of simulations studies were performed to estimate the efficiency of the method. In order to illustrate the validity of this approach in experimental conditions, we used real MEG data from a visual stimulation task on one test subject and estimated, in different time windows of interest, functional networks of correlated sources.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 8 )