By Topic

On the Theory and Design of a Class of PR Uniform and Recombination Nonuniform Causal-Stable IIR Cosine Modulated Filter Banks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yin, S.S. ; Dept. of Electr. & Electron. Eng., Hong Kong Univ., Hong Kong ; Chan, S.C. ; Tsui, K.M. ; Xie, X.M.

This paper studies the theory and design of a class of perfect reconstruction (PR) uniform causal-stable infinite-impulse response (IIR) cosine modulated filter banks (CMFBs). The design approach is also applicable to the design of PR recombination nonuniform (RN) IIR CMFBs. The polyphase components of the prototype filters of these IIR CMFBs are assumed to have the same denominator so as to simplify the PR condition. In designing the proposed IIR CMFB, a PR FIR CMFB with similar specifications is first designed. The finite-impulse response prototype filter is then converted to a nearly PR (NPR) IIR CMFB using a modified model reduction technique. The NPR IIR CMFB so obtained has a reasonably low reconstruction error. Its denominator is designed to be a polynomial in zM, where M is the number of channels, to simplify the PR condition. Finally, it is employed as the initial guess to constrained nonlinear optimization software for the design of the PR IIR CMFB. Design results show that both NPR and PR IIR CMFBs with good frequency characteristics and different system delays can be obtained by the proposed method. By using these IIR CMFBs in the RN CMFBs, new RN NPR and PR IIR CMFBs can be obtained similarly.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:55 ,  Issue: 8 )