By Topic

Synthetic Images of High-Throughput Microscopy for Validation of Image Analysis Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Antti Lehmussola ; Dept. of Signal Process., Tampere Univ. of Technol., Tampere ; Pekka Ruusuvuori ; Jyrki Selinummi ; Tiina Rajala
more authors

Automated image analysis provides a powerful tool when quantifying various characteristics of cell populations. Previously, the validation of image analysis results has been a task of expert biologist, who has manually analyzed the images and provided the ground truth to which the proposed analysis results have been compared. The traditional validation approach, prone to errors and variation, is unfeasible in the emergence of high-throughput measurement systems which make human-based analysis excessively laborious. The systems biology approach for studying, e.g., cellular activity massively in parallel, often lending on high-throughput microscopy, further increases the need for efficient, validated computational methods. As a solution for the problem, we propose a computational framework for simulating fluorescence microscopy images of cell populations. The simulation framework allows generation of synthetic images with realistic characteristics including the ground truth for validation. Thus, the simulation enables validation and performance analysis for various analysis algorithms. By creating a parameterized model of cells based on a given population, the simulator is able to create different cell types. The proposed modular framework, combined with the ability to create high-throughput measurements, provides a powerful tool for validating image analysis methods in traditional microscopy as well as in high content screening. Moreover, we use experimental data to study the validity of the proposed modeling approach.

Published in:

Proceedings of the IEEE  (Volume:96 ,  Issue: 8 )