By Topic

Analysing the effect of process variation to reduce parametric yield loss

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Ramakrishnan ; School of Electrical, Electronic and Computer Engineering, Merz Court, Claremont Road, Newcastle University, NE1 7RU, UK ; S. Shedabale ; G. Russell ; A. Yakovlev

For several decades, the output from semiconductor manufacturers has been high volume products with process optimisation being continued throughout the lifetime of the product to ensure a satisfactory yield. However, product lifetimes are continually shrinking to keep pace with market demands. Furthermore there is an increase in dasiafoundrypsila business where product volumes are low; consequently it is no longer feasible to optimise the process during the product lifetime resulting in an increase in parametric yield loss. This paper describes the use a combination of two statistical tools namely Design of Experiments (DoE) and Response Surface Modelling (RSM) which permit the identification and modelling of those process parameters whose variation which will impact most on the performance of a circuit. The efficiency of this approach, compared to using a Monte Carlo analysis, is demonstrated with respect to a Mutual Exclusion Element (MUTEX) which is used extensively in synchronisers where process variations can have considerable impact on circuit performance. To obtain the same modelling accuracy, the Monte Carlo approach would require large number of simulations compared to nine using the DoE scheme with the low computational overhead. This method can be used by semiconductor manufacturers and design house alike to bridge the gap between manufacture and design.

Published in:

2008 IEEE International Conference on Integrated Circuit Design and Technology and Tutorial

Date of Conference:

2-4 June 2008