Cart (Loading....) | Create Account
Close category search window

A Compact Electrical Model for Microscale Fuel Cells Capable of Predicting Runtime and I V Polarization Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min Chen ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Rincon-Mora, G.A.

The growing popularity and success of fuel cells (FCs) in aerospace, stationary power, and transportation applications is driving and challenging researchers to complement and in some cases altogether replace the batteries of portable systems in the hopes of increasing functional density, extending runtime, and decreasing size. Direct-methanol fuel cell (DMFC) batteries have now been built and conformed to low-cost technologies and chip-scale dimensions. Conventional FC models, however, fail to accurately capture the electrical nuances and runtime expectancies of these microscale devices, yet predicting that these electrical characteristics are even more critical when designing portable low-power electronics. A Cadence-compatible model of a DMFC battery is therefore developed to capture all pertinent dynamic and steady-state electrical performance parameters, including capacity and its dependence to current and temperature, open-circuit voltage, methanol-crossover current, polarization curve and its dependence to concentration, internal resistance, and time-dependent response under various loading conditions-the model can also be extended to other micro- and macroscale FC technologies. The simulation results of the proposed electrical model are validated and compared against the experimental performance of several DMFC prototypes, resulting in a runtime error of less than 10.8% and a voltage error under various current loads of less than 80 mV for up to 95% of its operational life. The root cause of the remaining errors and relevant temperature effects in the proposed model are also discussed.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:23 ,  Issue: 3 )

Date of Publication:

Sept. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.