By Topic

Channel Estimation for MIMO-OFDM Systems in Non-sample-Spaced Multipath Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The decision-directed space-alternating generalized expectation-maximization (SAGE) algorithm is introduced in [1] to estimate the channel and track the channel varying for OFDM systems with transmitter diversity. However, this method is based upon a discrete Fourier transform (DFT), which will cause power leakage and result in an error floor in a multipath channel with non-sample-spaced time delays. In order to overcome this problem, a low rank approximation method is presented by using the signal subspace of the channel frequency autocorrelation matrix. Furthermore, a modified fast subspace tracking algorithm is introduced to adaptive estimate the signal subspace by using a space–time block coded training blocks sent at regular interval. Simulation results show the advantages of the proposed technique for MIMO-OFDM systems in time-varying non-sample-spaced wireless channels.

Published in:

Image and Signal Processing, 2008. CISP '08. Congress on  (Volume:5 )

Date of Conference:

27-30 May 2008