By Topic

Visual Tracking Based on Mixture Motion Model and Incorporate Observation Distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Accurate visual object tracking through long sequences is a challenging task since object's appearance changes and complex motion happens. We present mixture motion model and incorporate observation model within the Monte Carlo framework to achieve robust visual tracking. The mixture motion model which employs important history motion information of the target is built according to a motion measurement matrix to model the target's transition state. Meanwhile, the incorporate observation model is established by introducing SVM classification scores into normal tracking observation model. A particles filter's implementation with these mixture models is demonstrated, which leads to robust tracking results, especially in occlusion and complex scene.

Published in:

Image and Signal Processing, 2008. CISP '08. Congress on  (Volume:4 )

Date of Conference:

27-30 May 2008