By Topic

Segmentation of Moving Foreground Objects Using Codebook and Local Binary Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Robust detection of moving objects in complex scenes is one of the most challenging issues in computer vision. In this paper, we present a novel texture-wise approach to segment moving objects with codebook and local binary patterns (LBP). In many moving segmentation algorithms, the information from limited frames before current image is used. Our approach models background over long time with small memory. Firstly, we construct codebook model which represents a compressed form of background model for long image sequences. A single Gaussian model of per-pixel is built to deal with illumination changes. By using the correlation and texture of spatially proximal pixels, local binary patterns background model is constructed. Finally current image is segmented into two parts, foreground and background, by comparing current image with background model. Experiments show that the proposed approach achieves promising results robustly in real videos.

Published in:

Image and Signal Processing, 2008. CISP '08. Congress on  (Volume:4 )

Date of Conference:

27-30 May 2008