By Topic

A Selection Model for Optimal Fuzzy Clustering Algorithm and Number of Clusters Based on Competitive Comprehensive Fuzzy Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yaonan Wang ; Coll. of Electr. & Inf. Technol., Hunan Univ., Changsha ; Chunsheng Li ; Yi Zuo

Fuzzy c-means (FCM) and its variants suffer from two problems-local minima and cluster validity-which have a direct impact on the formation of final clustering. There are two strategies-optimization and center initialization strategies-that address the problem of local minima. This paper proposes a center initialization approach based on a minimum spanning tree to keep FCM from local minima. With regard to cluster validity, various strategies have been proposed. On the basis of the fuzzy cluster validity index, this paper proposes a selection model that combines multiple pairs of a fuzzy clustering algorithm and cluster validity index to identify the number of clusters and simultaneously selects the optimal fuzzy clustering for a dataset. The promising performance of the proposed center-initialization method and selection model is demonstrated by experiments on real datasets.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:17 ,  Issue: 3 )