By Topic

A novel risk assessment system for port state control inspection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhong Gao ; Coll. of Telecommun. Inf. Eng., Nanjing Univ. of Posts & Telecommun., Nanjing ; Guanming Lu ; Liu, Mengjue ; Meng Cui

Port state control (PSC) inspection is the most important mechanism to ensure world marine safe. Recently, some SVM-based risk assessment systems have been presented in the world. They estimate the risk of each candidate ship based on its generic factors and history inspection factors to select high-risk one before conducting on-board PSC inspection. However, how to improve the performance of the PSC inspection under the situation of noisy data when applying SVM is still a challenging problem. In this paper, we propose a new approach for PSC inspection, which uses a novel support vector machine and k-nearest neighbor (KNN-SVM) to remove noisy training examples and Bag of Words (BW) to extract some new target factors for the PSC inspection database. The experimental results show that the generalization performance and the accuracy of risk assessment are improved significantly compared to that of the traditional SVM classifier, and adapt to engineering applications.

Published in:

Intelligence and Security Informatics, 2008. ISI 2008. IEEE International Conference on

Date of Conference:

17-20 June 2008