By Topic

Bioterrorism event detection based on the Markov switching model: A simulated anthrax outbreak study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hsin-Min Lu ; Manage. Inf. Syst., Univ. of Arizona, Tucson, AZ ; Daniel Zeng ; Hsinchun Chen

The threat of infectious disease outbreaks and bioterrorism attacks has stimulated the development of syndromic surveillance systems, which focus on using pre-diagnostic data such as emergency department chief complaints and over-the-counter (OTC) drug sales to detect bioterrorism events in a timely manner. A key function of syndromic surveillance systems is detecting possible bioterrorism events from time series data. In this paper, we propose a novel temporal outbreak detection method based on the Markov switching model, a special case of hidden Markov models. The model is motivated to address several computational problems with existing detection schemes concerning the inconsistency in parameter estimation and the resulting undesired detection performance. Preliminary evaluation using simulated outbreaks injected on authentic time series shows that our method outperforms benchmark methods in terms of outbreak detection speed and detection sensitivity at given levels of false alarm rates.

Published in:

Intelligence and Security Informatics, 2008. ISI 2008. IEEE International Conference on

Date of Conference:

17-20 June 2008