By Topic

A scalable architecture for variable block size motion estimation on Field-Programmable Gate Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moorthy, T. ; Dept. of Electr. & Comput. Eng., Ryerson Univ., Toronto, ON ; Ye, A.

The flexibility of field-programmable gate arrays (FPGAs) encourages design reuse and can greatly enhance the upgradability of digital systems. This flexibility is particularly useful in the design of highly flexible video encoding systems that can accommodate a multitude of existing standards as well as the rapid emergence of new standards. In this paper, we investigate the use of FPGAs in the design of a highly scalable variable block size motion estimation (VBSME) architecture for the H.264/AVC video encoding standard. The scalability of the architecture allows one to incorporate the system into low cost single FPGA solutions for low resolution encoding applications as well as into high performance multi-FPGA solutions targeting high-resolution video encoding applications. To overcome the performance gap between FPGAs and application specific integrated circuits (ASICs), our algorithm intelligently increases its parallelism as the design scales while minimizing the use of memory bandwidth. The core computing unit of the architecture is implemented on FPGAs and its performance is reported in this paper. It is shown that the computing unit is able to achieve real-time 40 fps performance for 640times480 resolution VGA video while incurring only 4% device utilization on a Xilinx XC5VLX330 (Virtex-5) FPGA. With 8 computing units (at 36% device utilization), the architecture is able to achieve real-time 45 fps performance for encoding full 1920times1088 progressive HDTV video.

Published in:

Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on

Date of Conference:

4-7 May 2008