By Topic

Performance Analysis of Power-Aware Task Scheduling Algorithms on Multiprocessor Computers with Dynamic Voltage and Speed

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Keqin Li ; Dept. of Comput. Sci., State Univ. of New York, New York, NY

Task scheduling on multiprocessor computers with dynamically variable voltage and speed is investigated as combinatorial optimization problems, namely, the problem of minimizing schedule length with energy consumption constraint and the problem of minimizing energy consumption with schedule length constraint. The first problem has applications in general multiprocessor computing systems where energy consumption is an important concern and in mobile computers where energy conservation is a main concern. The second problem has applications in real-time multiprocessing systems where timing constraint is a major requirement. These problems emphasize the tradeoff between power and performance and are defined such that the power-performance product is optimized by fixing one factor and minimizing the other. It is found that both problems are equivalent to the sum of powers problem and can be decomposed into two subproblems, namely, scheduling tasks and determining power supplies. Such decomposition makes design and analysis of heuristic algorithms tractable. We analyze the performance of list scheduling algorithms and equal-speed algorithms and prove that these algorithms are asymptotically optimal. Our extensive simulation data validate our analytical results and provide deeper insight into the performance of our heuristic algorithms.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:19 ,  Issue: 11 )