By Topic

DDMR: Dynamic and Scalable Dual Modular Redundancy with Short Validation Intervals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Golander, A. ; Tel Aviv Univ., Tel Aviv ; Weiss, Shlomo ; Ronen, R.

DMR (dual modular redundancy) was suggested for increasing reliability. Classical DMR consists of pairs of cores that check each other and are pre-connected during manufacturing by dedicated links. In this paper we introduce the dynamic dual modular redundancy (DDMR) architecture. DDMR supports run-time scheduling of redundant threads, which has significant benefits relative to static binding. To allow dynamic pairing, DDMR replaces the special links with a novel ring architecture. DDMR uses short instruction sequences for validation, smaller than the processor reorder buffer. Such short sequences reduce latencies in parallel programs and save resources needed to buffer uncommitted data. DDMR scales with the number of cores and may be used in large multicore architectures.

Published in:

Computer Architecture Letters  (Volume:7 ,  Issue: 2 )