Cart (Loading....) | Create Account
Close category search window
 

A Computational Model of FGF-2 Binding and HSPG Regulation Under Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wensheng Shen ; Coll. at Brockport, Dept. of Comput. Sci., State Univ. of New York, Brockport, NY, USA ; Changjiang Zhang ; Fannon, M.W. ; Forsten-Williams, K.
more authors

A novel convection--diffusion--reaction model is developed to simulate fibroblast growth factor (FGF-2) binding to cell surface receptors (FGFRs) and heparan sulfate proteoglycans (HSPGs) under flow conditions within a cylindrical-shaped vessel or capillary. The model consists of a set of coupled nonlinear partial differential equations (PDEs) and a set of coupled nonlinear ordinary differential equations (ODEs). The time-dependent PDE system is discretized and solved by a second-order implicit Euler scheme using the finite volume method. The ODE system is solved by a stiff ODE solver VODE using backward differencing formulation (BDF). The transient solution of FGF-2, FGFR, HSPG, and their bound complexes for three different flow rates are computed and presented. Simulation results indicate that the model can predict growth factor transport and binding to receptors with/without the presence of heparan sulfate, as well as the effect of flow rate on growth factor-receptor binding. Our computational model may provide a useful means to investigate the impact of fluid flow on growth factor dynamics, and ultimately, signaling within the circulation.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 9 )

Date of Publication:

Sept. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.