By Topic

Pose Invariant Face Recognition Using Probability Distribution Functions in Different Color Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demirel, Hasan ; Dept. of Electr. & Electron. Eng., Eastern Mediterranean Univ., Famagusta, Turkey ; Anbarjafari, G.

In this letter a new and high performance pose invariant face recognition system based on the probability distribution functions (PDF) of pixels in different color channels is proposed. The PDFs of the equalized and segmented face images are used as statistical feature vectors for the recognition of faces by minimizing the KullbackLeibler distance (KLD) between the PDF of a given face and the PDFs of faces in the database. Feature vector fusion (FVF) and majority voting (MV) methods have been employed to combine feature vectors obtained from different color channels in HSI and YCbCr color spaces to improve the recognition performance. The proposed system has been tested on the FERET and the Head Pose face databases. The recognition rates obtained using FVF approach for FERET database is 98.00% compared with 94.60% and 68.80% for MV and principle component analysis (PCA)-based face recognition techniques, respectively.

Published in:

Signal Processing Letters, IEEE  (Volume:15 )