By Topic

Scale-invariant range features for time-of-flight camera applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haker, M. ; Inst. for Neuro- & Bioinf., Lubeck Ratzeburger, Univ., Lubeck ; Bohme, M. ; Martinetz, T. ; Barth, E.

We describe a technique for computing scale-invariant features on range maps produced by a range sensor, such as a time-of-flight camera. Scale invariance is achieved by computing the features on the reconstructed three-dimensional surface of the object. The technique is general and can be applied to a wide range of operators. Features are computed in the frequency domain; the transform from the irregularly sampled mesh to the frequency domain uses the Nonequispaced Fast Fourier Transform. We demonstrate the technique on a facial feature detection task. On a dataset containing faces at various distances from the camera, the equal error rate (EER) for the case of scale-invariant features is halved compared to features computed on the range map in the conventional way. When the scale-invariant range features are combined with intensity features, the error rate on the test set reduces to zero.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008