Cart (Loading....) | Create Account
Close category search window

Tracking multiple pedestrians in real-time using kinematics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Apewokin, S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Valentine, B. ; Bales, R. ; Wills, L.
more authors

We present an algorithm for real-time tracking of multiple pedestrians in a dynamic scene. The algorithm is targeted for embedded systems and reduces computational and storage costs by using an inexpensive kinematic tracking model with only fixed-point arithmetic representations. Our algorithm leverages from the observation that pedestrians in a dynamic scene tend to move with uniform speed over a small number of consecutive frames. We use a multimodal background modeling technique to accurately segment the foreground (moving people) from the background. We then use connectivity analysis to identify blobs in the foreground and calculate the center of mass of each blob. Finally, we establish correspondence between the center of mass of each blob in the current frame with center of mass information gathered from the two immediately preceding frames. We evaluate our algorithm on a real outdoor video sequence taken with an inexpensive webcam. Our implementation successfully tracks each pedestrian from frame to frame in real-time. Our algorithm performs well in challenging situations resulting from occlusion and crowded conditions, running on an eBox-2300 Thin Client VESA PC.

Published in:

Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE Computer Society Conference on

Date of Conference:

23-28 June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.